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Langevin equation for the Rayleigh model with finite-range interactions
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Both linear and nonlinear Langevin equations are derived directly from the Liouville equation for an exactly
solvable model consisting of a Brownian particle of massM interacting with ideal gas molecules of massm via
a quadratic repulsive potential. Explicit microscopic expressions for all kinetic coefficients appearing in these
equations are presented. It is shown that the range of applicability of the Langevin equation, as well as
statistical properties of random force, may depend not only on the mass ratiom/M but also on the parameter
Nm/M , involving the average numberN of molecules in the interaction zone around the particle. For the case
of a short-ranged potential, whenN!1, analysis of the Langevin equations yields previously obtained results
for a hard-wall potential in which only binary collisions are considered. For the finite-ranged potential, when
multiple collisions are important (N@1), the model describes nontrivial dynamics on time scales that are on
the order of the collision time, a regime that is usually beyond the scope of more phenomenological models.

DOI: 10.1103/PhysRevE.68.041107 PACS number~s!: 05.20.Jj, 05.40.Jc
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I. INTRODUCTION

The explicit derivation from first principles of the Lange
vin equation, describing the evolution of a small number
variables in a complex system, is often necessary sinc
many cases the statistical properties of the random force
range of applicability and even the form of the equation
far from evident @1#. The need for microscopic conside
ations is especially compelling in the case of a nonlin
Langevin equation where the usual phenomenological
proach of adding stochastic terms to the deterministic n
linear equation describing the relaxation of targeted variab
may be inadequate@2#. Although statistical properties of th
random force in the nonlinear Langevin equation may
deduced phenomenologically in some cases@3#, it is gener-
ally necessary to start from the microscopic behavior of
system in order to construct the appropriate form of
equation.

The conventional systematic method for deriving t
Langevin equation~LE! for a Brownian particle exploits
Mori’s projection-operator techniques@1#, which allow the
transformation of the microscopic Liouville equation to
non-Markovian predecessor of the LE, generally known
the generalized Langevin equation. The LE can be then
tained by a subsequent perturbation expansion of
memory kernel appearing in the generalized Langevin eq
tion using the square root ratio of the mass of a bath part
to that of the Brownian particle, (m/M )1/2, as a perturbation
parameterl. While the first step in the derivation of the LE
involving rearrangement of the Liouville equation with pr
jection operator methods, is an exact algebraic procedure
question of convergence of thel expansion in the secon
step is subtle and can be strictly justified only under assu
tions that are difficult to prove in general@4#. Mazur and
Oppenheim developed an alternative projection-operator
proach more suitable to analyze the convergence of thl
expansion@5#. The validity of the perturbation analysis i
both the Mori and the Mazur-Oppenheim approach has b
examined for an exactly solvable model consisting of tag
particle motion in a harmonic lattice@6#. Unfortunately, the
1063-651X/2003/68~4!/041107~15!/$20.00 68 0411
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convergence properties of thel series are trivial for this
model, since all terms in thel expansion higher than zerot
order vanish. As a result, the memory kernel for the line
damping force in the LE does not depend on the mass ra
and all nonlinear terms are identically zero@7#.

One goal of this paper is to present and analyze a sim
fied model that serves as a useful and nontrivial test
ground for examining some of the subtle aspects of
theory of Brownian motion. The model considered here i
generalization of the well-known Rayleigh model of
Brownian particle of massM constrained to move in one
dimension and subjected to collisions with an equilibriu
ideal ~noninteractive! gas of particles of massm. The Ray-
leigh model is perhaps the oldest model of nonequilibriu
statistical physics@8#, and has attracted much attention ov
the years, with early work@9–11# focusing on the model as
test of the systematic derivation of macroscopic kinetic eq
tions for the heavy particle from the master equation. Mo
recent investigations have examined the stationary and t
sient solutions of the asymmetric Rayleigh model in whi
the thermodynamic parameters characterizing the gas to
left and right of the piston differ@12#. In all these studies, the
interaction between the Brownian particle and the bath
assumed to be short ranged with a negligible collision ti
tc . Only binary collisions are considered in this model b
cause the range of interaction is assumed to be short c
pared to the average distance between bath particles.
usual starting point for analysis of the Rayleigh model w
binary collisions is a Markovian master equation for par
cle’s velocity distribution function. The master equation
only an approximate form of the fully microscopic Liouvill
equation, and valid only for time scales longer thantc . To
test many aspects of the theory of Brownian motion, it
essential to start from a fully microscopic description of t
dynamics directly from the Liouville equation so that an
non-Markovian character of bath correlations is properly
corporated and particle dynamics on time scales less thatc
can be described. To this end, one may generalize the in
action between the bath and Brownian particles from a ha
wall to a parabolic repulsive potential. The generaliz
©2003 The American Physical Society07-1
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model is analytically solvable, allowing explicit calculatio
of all terms appearing in the derivation of both linear a
nonlinear LE beyond the binary collision approximation. W
demonstrate that in addition to the small parameterl
5(m/M )1/2, the character of the dynamics of a tagged p
ticle can be governed by an additional parameter,N1/2l, in-
volving the average numberN of bath particles simulta-
neously interacting with the Brownian particle. For a lar
Brownian particle, it is shown that whenN@1 and multiple
collisions are important, the parameter of the formall ex-
pansion is actuallyN1/2l.

The paper is organized as follows. In Sec. II, the Maz
Oppenheim approach is reviewed to provide groundwork
all subsequent analysis. In Sec. III, the structure of term
the l expansion is examined and presented in a conven
form. In Sec. IV, the general formalism is applied to t
Rayleigh model with a quadratic repulsive potential desc
ing bath-Brownian particle interactions, and the LE is d
rived for the heavy particle. The nonlinear LE is obtained
Sec. V and various aspects of this equation are discus
Finally, a few concluding remarks are made in Sec. VI.

II. BASIC EQUATIONS

The Hamiltonian for a Brownian system composed o
tagged particle of massM in a bath of point particles of mas
m is

H5
P2

2M
1H0 , ~1!

H05(
i

pi
2

2m
1U~x,X!, ~2!

where x5$xi% and pi are positions and momenta of ba
particles,X and P are those of the Brownian~or tagged!
particle, andH0 is the Hamiltonian of the bath in the field o
the tagged particle fixed atX. One can expect that on averag
P;AMkBT, wherekB is Boltzmann’s constant andT is the
temperature, and that the scaled momentumP* 5lP, where
l5Am/M , is of the same order as the average momentum
a bath particle. In terms of scaled momentum, one can w
the Liouville operator as

L5L01lL1 , ~3!

L05(
i

H pi

m

]

]xi
1Fi

]

]pi
J , ~4!

L15
P*
m

]

]X
1F

]

]P*
, ~5!

whereFi52“xi
U andF52“XU are the forces on thei th

bath particle and on the Brownian particle, respectively. T
operatorL0 dictates the dynamics of the bath in the field
the fixed Brownian particle.

If the mass of the tagged particle is large~i.e., a Brownian
particle!, one might intuitively expect that inertial effects o
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the particle’s motion are small and that the force on the p
ticle, F(t)5eLtF, is close to the pressure force, i.e., to t
force on the fixed tagged particle,

F0~ t ![eL0tF. ~6!

In the Mazur-Oppenheim approach@5#, the forceF(t) is de-
composed using the projection operatorP which averages a
dynamical variableA over the canonical distributionr
5Z21exp(2bH0), for bath variables at fixed position of th
tagged particle,

PA5^A&[E rA)
i

dxi dpi , ~7!

where Z is the canonical partition function andb51/kBT.
Using the operator identity@13#

e(A1B)t5eAt1E
0

t

dt eA(t2t)Be(A1B)t, ~8!

with A5L andB52PL, one may formally decompose th
forceF(t) on the tagged particle into a ‘‘random’’ part and
remainder as

F~ t !5F†~ t !1E
0

t

dt eL(t2t)PLF†~t!, ~9!

whereF†(t)5eQLtF andQ512P. The factorPLF†(t) in
the integral in Eq.~9! can be simplified taking into accoun
the orthogonality ofP andL0 ~i.e.,PL050), and the equal-
ity

^“XF†~ t !&52b^F0F†~ t !&, ~10!

which can be derived by integration by parts. As a result, o
obtains the following exact equation of motion for the sca
momentum of the tagged particle:

dP* ~ t !

dt
5lF†~ t !1l2E

0

t

dt eL(t2t)S ¹P
*
2

b

m
P* D

3^FF†~t!&, ~11!

where F†(t) is a zero-centered random force obeyi
^F†(t)&5PeQLtF50.

The random forceF†(t)5e(L01lQL1)tF can be further ex-
panded in terms of the mass ratio parameterl using identity
~8! to obtain

F†~ t !5F0~ t !1lE
0

t

dt1 eL0(t2t1)QL1F0~ t1!1l2E
0

t

dt1

3E
0

t1
dt2 eL0(t2t1)QL1eL0(t12t2)QL1F0~ t2!1 . . . .

~12!

Similarly, the kernelK(t)5^FF†(t)& appearing in the exac
equation of motion~11! of the tagged particle may be ex
panded in a power series inl,
7-2
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K~ t !5^FF†~ t !&5(
l

Kl~ t !, ~13!

K0~ t !5l0^FF0~ t !&,

K1~ t !5l1E
0

t

dt1C1~ t,t1!,

K2~ t !5l2E
0

t

dt1E
0

t1
dt2C2~ t,t1 ,t2! . . . ,

where the correlation functionsCl are defined to be

C1~ t0 ,t1!5^F~eL0(t02t1)QL1!F0~ t1!&, ~14!

C2~ t0 ,t1 ,t2!5^F~eL0(t02t1)QL1!~eL0(t12t2)QL1!F0~ t2!&,

Cl~ t0 ,t1 , . . . ,t l !5K FS )
i 51

l

eL0(t i 212t i )QL1D F0~ t l !L
The truncation of thel expansion to zeroth order,K(t)
'K0(t), leads from Eq.~11! directly to the generalized
Langevin equation

dP* ~ t !

dt
5lF†~ t !2l2E

0

t

dt M0~t!P* ~ t2t!, ~15!

where

M0~ t !5
b

m
K0~ t !5

b

M
^FF0~ t !&. ~16!

This approximation is sensible provided the correlation fu
tions Cl appearing at higher order in thel-expansion decay
on a similarl-independent time scaletc characteristic of
motions of the fixed-particle system~i.e., governed byL0).
Mazur and Oppenheim@5# succeeded in proving that this
the case assuming the factorization properties

^A~ t1!eL0tB~ t2!& →
t.tc

^A~ t1!&^B~ t2!&.

While being formally nonlocal in time, Eq.~15! can actually
be written in a form that is local in time by expandin
P* (t2t) aroundt50 to obtain

dP* ~ t !

dt
5lF†~ t !2l2g0~ t !P* ~ t !, ~17!

whereg0(t)5*0
t dt M0(t). The nonlocal correction terms t

this approximation are of the form@14#

l2E
0

t

dt M0~t!E
t2t

t

dt8 Ṗ* ~t8!;l3, ~18!

and are therefore of higher order inl. Naturally, this analy-
sis is pertinent only if the characteristic timetc for decay of
M0(t) does not depend onl.
04110
-

The local equation~17! is applicable on arbitrary time
scales and fort@tc assumes the form of the conventional L
with a time-independent damping coefficientg0

5*0
`dt M0(t). It is then evident from Eq.~17! that the au-

tocorrelation function of the momentum of a heavy partic
decays on a time scaletp;l22 that is much longer than the
characteristic time of the bathtc;l0. One can therefore
expect the local form of the LE with time-independent dam
ing to be a good approximation for Eq.~17! except at short
times determined byt,tc .

It will be shown below that for homogeneous ba
K1(t)50, so the next approximation for thel expansion
~13! is of the form K(t)'K0(t)1K2(t). The equation of
motion for the momentum of the tagged particle in this ca
includes a nonlinear damping term of third order inP* . This
equation will be considered in Sec. V.

III. STRUCTURE OF THE TERMS IN l EXPANSION

To examine the convergence properties of thel expan-
sion and other features of the projection-operator deriva
of the LE, the structure of the correlation functionsCl de-
fined in Eq. ~14! which appear in the expansion of th
memory function must be analyzed. Although only the fun
tions C0 and C2 are needed to obtain the nonlinear LE
lowest order inl, it is useful to know general properties o
Cl .

By inspection of the symmetry properties of the system
is immediately apparent that the correlation functionsC2n11
corresponding to odd powers ofl contain an odd number o
factorsF and“X , and therefore vanish for isotropic system
In fact, in the absence of external field, the dependence
the particle coordinate appears only through the differe
xi2X, and it is useful to introduce new variablesqi5xi
2X. Since the vectorsF52“XU5( i“qi

U and “X5

2( i“qi
have negative parity and the HamiltonianH0 is in-

variant with respect to transformation$qi→2qi , pi→2pi%,
the correlation functionsC2n11(t,t1 , . . . ,t2n11) vanish.

Correlation functions of even ordersC2n do not vanish
and have a rather complicated structure. For notational s
plicity, we restrict the analysis to the case of one-dimensio
diffusion, expecting no physical features in higher dime
sions. For future development, it is convenient to define

G0~ t !5F0~ t !,

G1~ t,t1!5S~ t2t1!F0~ t1!,

G2~ t,t1 ,t2!5S~ t2t1!S~ t12t2!F0~ t2!,

Gs~ t,t1 , . . . ,ts!5S~ t2t1!•••S~ ts212ts!F0~ ts!, ~19!

where

S~ t i2t l !5eL0(t i2t l )
]

]X
. ~20!

Note the property
7-3
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^Gi 1
Gi 2

•••Gi l
&50 ~21!

which holds for arbitrary time arguments wheni 11 i 21•••

1 i l and l have different parities. For example,^Gi& and
^G0G0Gi& vanish for even i, while ^G0Gi& and
^G0G0G0Gi& are zero for oddi.

Using the definitions above and according to Eqs.~14!,
the second-order correlation functionC2 can be written as

C2~ t,t1 ,t2!5S P*
m D 2

^G0G2~ t,t1 ,t2!&

1
1

m
^G0G0~ t2t1!G1~ t,t2!&

2
1

m
^G0G0~ t2t1!&^G1~ t,t2!&. ~22!

Using cumulants, denoted by^̂ •••&& and defined via the re
lations

^A&5 ^̂ A1&&,

^A1A2&5^A1&^A2&1 ^̂ A1A2&&,

^A1A2A3&5^A1&^A2&^A3&1^A1&^̂ A2A3&&1^A2&^̂ A3A1&&

1^A3&^̂ A2A1&&1 ^̂ A1A2A3&&,

A

the functionC2 can be written as

C2~ t,t1 ,t2!5S P*
m D 2

^̂ G0G2~ t,t1 ,t2!&&

1
1

m
^̂ G0G0~ t2t1!G1~ t,t2!&&. ~23!

Note that the zeroth-order kernelK0 is also a cumulant,K0
5^FF0(t)&5 ^̂ G0G0(t)&&. The relevance of cumulant repre
sentation forCl follows from the fact that one expects th
cumulants to have similar scaling properties with respec
parameters of the system independent of their order. For
ample, it will be established in the following section th
cumulantŝ^Gi 1

Gi 2
•••Gi l

&& of any order are linear function
of the average numberN of particles in the interaction zon
around the particle for the Rayleigh model. Therefore,
this model, the first two nonvanishing terms in thel expan-
sion ~13!, namely,K0 andK2, are both linear inN.

Consider the correlation functionsC2l with l>1. It is
tedious, though not difficult to establish that these correlat
functions are of orderl in cumulantŝ ^Gi 1

Gi 2
•••Gi l

&&. Note

thatC2l has the contributions that are of orderl 12 or less in
Gi . First consider the terms of maximal orderl 12: One
type of these terms are the correlation functions of the fo

^G0G0Gi 1
Gi 2

•••Gi l
&, ~24!
04110
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where here and below time arguments have been omitted
brevity. The indicesi 1 , . . . ,i l may take any values from th
set$0,1, . . . ,l % provided

i 11 i 21•••1 i l5 l . ~25!

For example, forl 51 the correlation function of maxima
order inGi which contributes toC2 is ^G0G0G1&, as can be
seen from Eq.~23!. For l 52 the functionC4 includes con-
tributions of the formŝG0G0G0G2& and^G0G0G1G1&, and
so on.

All other contributions of orderl 12 in Gi can be written
as products of correlation functions of lower orders whi
can be obtained dividing the sequences

G0~t1!G0~t2!Gi 1
~t3!Gi 2

~t4!•••Gi l
~t l 12! ~26!

into groups in all possible ways without permuting function
For example, forl 52 the three remaining terms are

^G0~t1!G0~t2!&^G0~t3!G2~t4!&,

^G0~t1!G0~t2!&^G1~t3!G1~t4!&,

^G0~t1!G0~t2!G1~t3!&^G1~t4!&,

^G0~t1!G0~t2!&^G1~t3!&^G1~t4!&.

Clearly, the terms of maximal order in cumulants correspo
to the case when all indicesi s in Eqs.~24! and~25! are equal
to 1. Then the cumulant expansion of all such terms conta
the contribution

^G0G0&^G1&^G1&•••^G1&, ~27!

which containsl factors^G1(t i)& and, therefore, is of orde
l 11 in cumulants. However, all terms of orderl 12 in Gi
described above enter inC2l via combinations

^G0G0Gi 1
Gi 2

•••Gi l
&2^G0G0&^Gi 1

Gi 2
•••Gi l

&,

^G0G0Gi 1
&^Gi 2

•••Gi l
&2^G0G0&^Gi 1

&^Gi 2
•••Gi l

&,

^G0G0Gi 1
Gi 2

&^Gi 3
•••Gi l

&

2^G0G0&^Gi 1
Gi 2

&^Gi 3
•••Gi l

&, . . . ,

which is a consequence of the presence of the operatoQ
~first from the left! in the definition ofCi @see Eq.~14!#. As
a result, contributions~27! involving l 11 cumulant factors
cancel, and the maximal order in cumulants of survivi
terms in the expression forC2l contain at mostl cumulant
factors.

Having established that the contributions toC2l from
terms of maximal orderl 12 in Gi are of orderl in cumu-
lants, it is clear that the terms of orderl 11 and lower inGi
cannot contain more thanl cumulant factors since such term
contain at least one isolated factor ofG0 whose average van
ishes. HenceC2l containsat most lcumulant factors.

In the following section, we examine the consequences
the cumulant expansions of the memory function for a s
7-4
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cific system, namely, the Rayleigh model with a repuls
parabolic potential. It will be demonstrated that for the Ra
leigh model, cumulants are linear functions of the avera
numberN of particles in the interaction zone around the p
ticle. This, in turn, implies that the terms in thel expansion
behave as

K2l;~N1N21•••1Nl !l2l ~28!

for l .1. Clearly, for a large particle and/or long-ranged p
tential leading to N@1, these results suggest thatK2l
;Nll2l , demonstrating that the actual parameter ofl expan-
sion for this exactly solvable model is in factN1/2l. On the
other hand, for a short-ranged potential, whenN!1, all
terms in the expansion are linear inN, and one sees tha
K2l;Nl2l , and the effective small parameter ofl expansion
is in fact the square root of the mass ratio. To further illu
trate this analysis, an explicit form of the cumulant expa
sion of C4 is presented in Appendix A.

IV. THE LINEAR LANGEVIN EQUATION FOR A HEAVY
PARTICLE OR IDEALIZED PISTON

Consider the random motion of a piston of massM and
cross-sectional areaS subjected to collisions with an idea
gas particles of massm. The gas particles and the piston a
constrained to move in one dimension perpendicular to
piston faces. The velocity distribution of incident particl
f M(v) before collision with the piston is Maxwellian with
inverse temperatureb, namely,

f M~v !5S mb

2p D 1/2

expS 2
1

2
bmv2D . ~29!

The piston-particle interaction is assumed to be describe
a purely repulsive parabolic potential. For particles to the
of the piston the interaction potential between a gas part
and the piston is

Ul5H 1
2 kf~x2Xl !

2, x.Xl

0, x,Xl ,
~30!

wherekf is a force constant,x is the coordinate of the ga
particle, Xl5Xl f 2a the boundary of the piston-particle in
teraction zone,Xl f is the coordinate of the left face of th
piston, anda is the width of the interaction zone. Similarly
the gas particle–piston potential for the particles to the ri
of the piston has the analogous form

Ur5H 1
2 kf~x2Xr !

2, x,Xr

0 x.Xr ,
~31!

where Xr5Xr f 1a, and Xr f is the position of the piston’s
right face. We assume that the temperature is low enough~or
kf is sufficiently large! so that the probability for a particle t
reach the piston’s surface is negligible.

In the previous sections it was established that the dyn
ics of the piston can be deduced from time correlation fu
tions describing molecular motion in the field of the pist
04110
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fixed in space. Below we derive the explicit expressions
these correlation functions in the thermodynamic limit, n
glecting recollisions of the piston and gas particles due to
finite size of the bath.

Consider the force on the left side of the fixed piston,

Fl~ t !52kf(
i

qi~ t !u„qi~ t !…, ~32!

whereqi5xi2Xl is the position of gas particlei relative to
the boundary of the interaction zone,u(x) is the step func-
tion, and summation over indexi is over all particles in the
tube of diameterS to the left of the piston. In this section w
omit for brevity the subscript 0 for the force on the fixe
piston. The simplifying feature of parabolic potential is th
the timetc that a particle spends in the interaction zone
the fixed piston is independent of the initial velocity of th
particle and is given bytc5p/v, wherev5Akf /m. At a
given timet, the only gas particles in the interaction zone a
those that had positive velocities and coordinatesq in the
interval2vtc,q,0 at timet2tc . At time t, the position of
the gas particle is determined byq(t)5(v/v)sinv(t2tin),
wheret in5t2tc2q/v corresponds to the time at which th
gas particle enters the interaction region andq is the position
of the gas particle at timet2tc . It then follows thatq(t)
5(v/v)sinv(tc1q/v)52(v/v)sinvq/v, which implies that
the total instantaneous force on the left side of the fix
piston at timet.0 can be written as

Fl~ t !52kfE
0

`

dvE
2vtc

0

dq N~Xl1q,v;t2tc!
v
v

sin
vq

v
.

~33!

In Eq. ~33!, q5x2Xl andN(x,v;t) is the microscopic linear
density of particles defined by

N~x,v;t !5(
i

d„x2xi~ t !…d„v2v i~ t !…. ~34!

Similarly, the total instantaneous force acting on the rig
side of the piston is

Fr~ t !52kfE
2`

0

dvE
0

2vtc
dq N~Xr1q,v;t2tc!

v
v

sin
vq

v
,

~35!

whereq5x2Xr .
For a particle outside the interaction zone of the fix

piston~i.e., forx,Xl , andx.Xr), the average linear densit
of particles is ^N(x,v)&5nS fM(v), where n is the total
~three-dimensional! density of bath particles, andS is the
cross-sectional area of the piston. It then follows from E
~33! and ~35! that the average force acting on the left^Fl&
and the right ^Fr& side of the piston is^Fl&52^Fr&
5nS/b.

It is straightforward to show that the stationary distrib
tion in the vicinity of the fixed piston, including the interac
tion zone, assumes Boltzmann’s form
7-5
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^N~x,v !&5nS fM~v !exp@2U~x!/kBT#. ~36!

To calculate the force correlation functions required to a
lyze the damping terms in the LE, correlation functions
the form^N(Y1)N(Y2)•••N(Ys)& must be evaluated, wher
Y denotes the position-velocity pair (x,v). It is sufficient to
consider only the case when time arguments are equal fo
functions, since time displacement can be transformed
spatial displacement for a free particle, i.e.,

N~x,v;t1t1!5N~x2vt1 ,v;t !. ~37!

Note that the productN(Y1)N(Y2) can be written as

N~Y1!N~Y2!5(
i , j

d~Y12Yi !d~Y22Yj !

5(
i

d~Y12Yi !d~Y22Yi !

1(
iÞ j

d~Y12Yi !d~Y22Yj !.

Sinced(Y12Yi)d(Y22Yi)5d(Y12Y2)d(Y12Yi), for the
ideal gas system one obtains

^N~Y1!N~Y2!&5d~Y12Y2!^N~Y1!&1^N~Y1!&^N~Y2!&.
~38!

For the three-point correlation function, the same argume
lead to the result

^N~Y1!N~Y2!N~Y3!&5d~Y12Y2!d~Y22Y3!^N~Y1!&

1d~Y12Y2!^N~Y1!&^N~Y3!&

1d~Y12Y3!^N~Y1!&^N~Y2!&

1d~Y22Y3!^N~Y1!&^N~Y2!&

1^N~Y1!&^N~Y2!&^N~Y3!&.

~39!

Equations ~38! and ~39! are the cumulant expansions
^N(Y1)N(Y2)& and^N(Y1)N(Y2)N(Y3)&, where the cumu-
lants

^̂ N~Y1!N~Y2!&&5d~Y12Y2!^N~Y1!&,

^̂ N~Y1!N~Y2!N~Y3!&&5d~Y12Y2!d~Y22Y3!^N~Y1!&,
~40!

^̂ N~Y1!N~Y2!•••N~Ys!&&

5d~Y12Y2!d~Y22Y3!•••d~Ys212Ys!^N~Y1!&

are proportional to the equilibrium densityn of gas particles.
To orderl2, the dynamics of the piston is described

the LE ~17! with a time-dependent damping coefficien
g0(t)5b/m*0

t dt^FF0(t)&, where the evolution of the tota
04110
-
f

all
to

ts

force F05Fl1Fr is determined by the constrained pisto
bath Liouville operator L0. Since ^Fl&52^Fr& and
^FlFl(t)&5^FrFr(t)&,

^FF0~ t !&52^FlFl~ t !&22^Fl&
252^̂ FlFl~ t !&&. ~41!

From Eqs.~41! and ~33!, one sees that̂FF0(t)& can be
expressed in terms of the cumulant̂ ^N(x,v;t
2tc)N(x8,v8;2tc)&&. Using property~37! and Eq.~41!, the
cumulant may be rewritten as

^̂ N~x2vt,v;2tc!N~x8,v8;2tc!&&

5d~x2vt2x8!d~v2v8!nS fM~v !. ~42!

Then, using Eqs.~41!, ~33!, and~42!, one obtains

^FF0~ t !&5
nSkf

2

v3
u~tc2t !$sinvt1v~tc2t !cosvt%

3E
0

`

dv f M~v !v3. ~43!

This can be reexpressed in the compact form

^FF0~ t !&5Nv2
m

b
j0~ t !, ~44!

wherej0(t) is a dimensionless function~see Fig. 1! given by

j0~ t !5A2

p
u~tc2t !$sinvt1~p2vt !cosvt%, ~45!

and

FIG. 1. The functionj0(t) ~solid line! governing the time de-
pendence of the memory functionM0(t)5Nv2j0(t) in the non-
Markovian Langevin equation~15!, and the damping functionz0(t)
~dashed line! in the local Langevin equation~48!.
7-6
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N5nS
^v2&1/2

v
~46!

is the average number of particles in the shell of thickn
l 5A^v2&/v around the piston. The parameterl specifies the
length at which the average bath particle penetrates the
teraction zone, andN5nSl is the average number of pa
ticles in the layer of thicknessl around the piston. Thus, it i
evident that in addition to the mass ratiol25m/M , the rel-
evant physics depends strongly on another characteristic
rameter of the system, namely,Nl2, which can be inter-
preted as the ratio of total massM* 5mnSlof bath particles
in the layer of thicknessl in the vicinity of the piston to the
massM of the piston.

With these definitions in hand, the time-dependent dam
ing coefficient in the LE~17! can be written as

g0~ t !5
b

mE
0

t

dt^FF0~ t !&5vNz0~ t !, ~47!

and therefore the LE~17! assumes the form

dP* ~ t !

dt
5lF†~ t !2vl2Nz0~ t !P* ~ t !, ~48!

where the damping functionz0(t)5v*0
t dt j0(t) is given

by

z0~ t !5A2

p
u~tc2t !$2~12cosvt !1~p2vt !sinvt%

14A2

p
u~ t2tc! ~49!

~see Fig. 1!. This expression describes the interesting ti
development of the dissipative force, an aspect of the
namics that is outside the scope of more phenomenolog
models. Fort,tc , Eq. ~48! describes essentially nonexp
nential relaxation of the momentum̂P(t)&5P(0)e2x(t)

with

x~ t !5l2NvE
0

t

dtz0~t!

5l2NA2

p
$p12vt2~p2vt !cosvt23 sinvt%.

~50!

For smallvt, x(t);(vt)2. On a time scalet.tc the damp-
ing function reaches its plateau value and the Markov
limit of the Langevin equation, in which the damping coe
ficient is independent of time, is recovered:

dP* ~ t !

dt
5lF†~ t !24A2

p
vl2NP* ~ t !. ~51!

Note that the characteristic time for relaxation of the mom
tum tp5v21(l2N)21 is governed by the parameterl2N,
rather thanl2. It is also interesting to observe that the av
04110
s
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age number of collisions of bath particles with the piston
t;tp is of ordernŜ v2&1/2tp5l22 and depends neither o
temperature nor on the piston’s size, but only on the m
ratio.

Equation ~51! is obtained under the condition that th
characteristic timetc for the force autocorrelation function i
negligible on a time scaletp of the dynamics of the momen
tum of the piston. Assuming in addition that the rando
force in this equation is Gaussian, one can obtain the Fok
Planck equation for the momentum distribution functi
f (P)

] f ~P!

]t
5nS

4m

M
A2kBT

pm H ]

]P
@P f~P!#1M kBT

]2f ~P!

]P2 J .

~52!

This coincides exactly with the equation for the piston int
acting with the bath particles through a hard-wall poten
previously obtained by van Kampen from the master eq
tion @10#.

The assumption of a Gaussian random force appears t
justified for Eq. ~51! describing dynamics on time scale
much longer thantc . In this case one can use a coars
grained description of the dynamics with time resolutiontc
!Dt!tp . The coarse-graining procedure corresponds to
placing the instantaneous random force in Eq.~51! by its
average over a time window of durationDt, i.e., F(t)
→F̂(t)5Dt21* t

t1DtF(t) dt. As previously discussed, th
number of collisions of bath particles with the piston for t
time intervaltp is of orderl22@1. Therefore the resolution
time interval Dt may be chosen sufficiently long that th
piston experiences many uncorrelated collisions duringDt.
Then, according to the central limit theorem, one may exp
that F̂(t) is Gaussian distributed.

For the more general LE~17! with time-dependent damp
ing, the random force is generally not Gaussian distribut
However, one can easily demonstrate that the distribution
the random force is approximately Gaussian in the lim
N@1 where the piston interacts simultaneous
with many bath particles. In fact, the cumulant expans
~23! of the multiple-time correlation function C2s
5^F(t1)F(t2)•••F(t2s)& contains the products ofs pair cor-
relation functionŝ F(t i)F(t j )&5 ^̂ F(t i)F(t j )&&. Since a cu-
mulant of any order is proportional toN, these terms are o
order Ns. The other terms in the expansion contain few
factors of the cumulants and therefore fewer factors ofN,
and hence may be neglected. ThenC2s can be approximately
expressed as a linear combination of pair correlation fu
tions, a well-known characteristic of a Gaussian rand
variable. The explicit form of the distribution function for th
random forcef (F0) can be obtained using the inverse Fo
rier transformation of the generating function~see, for ex-
ample, Ref.@2#!:

f ~F0!5
1

2pE2`

`

dk expH 2 ikF01(
s51

`
~ ik !s

s!
^̂ F0

s&&J .

~53!
7-7
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The cumulants of odd orders vanish, and the cumulant
even orders arê̂ F0

2s&&52^̂ Fl
2s&& whereFl is given by Eq.

~33!. Using Eq.~41! one finds that

^̂ Fl
2s&&5

1

A2
N g2ss!

G~s11/2!

G~s11!
, ~54!

where g25kf
2^v2&/2v2, and G(s) is the gamma function

Substituting Eq.~54! in Eq. ~53! gives the following integral
representation for the distribution function:

f ~F !5
1

2pE2`

`

dk exp$2 ikF2A2pN~12e2(gk)2
!%

~55!

If N@1, one can approximately write in the above expr
sion 12e2(gk)2

'(gk)2, which leads immediately to the
Gaussian distribution for the force. Similar argumen
hold for the distribution function of higher orde
f „F(t1),F(t2), . . .F(ts)….

V. THE NONLINEAR LANGEVIN EQUATION

We now turn our attention to the terms of higher order
l in the l expansion~13! of the memory functionK(t)
[^FF†(t)&5( lKl(t). It was shown in Sec. III that for a
homogeneous bathK1(t)50, and the first nonzero correc
tion to K0(t)5^FF0(t)& is K2(t) which is of second order in
l. From Eqs.~13! and ~23! one can see thatK2 has the
structure

K2~ t !5
l2

m2
A1~ t !P

*
2 1

l2

m
A2~ t !, ~56!

where the functionsA1(t) andA2(t) are given by

A1~ t !5E
0

t

dt1E
0

t1
dt2^̂ G0G2~ t,t1 ,t2!&&, ~57!

A2~ t !5E
0

t

dt1E
0

t1
dt2^̂ G0G0~ t2t1!G1~ t,t2!&&. ~58!

Substitution ofK'K01K2 into the exact equation of motio
~11! leads to the nonlinear generalized LE of the form

dP* ~ t !

dt
5lF†~ t !2l2E

0

t

dt M1~t!P* ~ t2t!

2l4E
0

t

dt M2~t!P
*
3 ~ t2t!, ~59!

where the memory functionsM1(t) andM2(t) are

M1~ t !5M0~ t !2
2l2

m2
A1~ t !1

l2b

m2
A2~ t !, ~60!
04110
of
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s

M2~ t !5
b

m3
A1~ t !. ~61!

It is interesting to note that a nonlinear LE of this form h
previously been obtained using a mode coupling appro
@15#. A similar Markovian version of a nonlinear Langevi
equation with a cubic damping term was considered by M
Donald @16# on purely phenomenological grounds.

Equation ~59! differs from the linear LE ~15! with
memory functionM0(t)5 b/m ^FF0(t)& not only by the
presence of nonlinear damping, but also by appearanc
correction terms of orderl2 to the memory functionM1(t)
for the linear damping. Note also that the last term on
right-hand side of Eq.~59! can be written in the local form
2l4P

*
3 (t)*0

t dt M2(t) since the nonlocal correction to thi

expressionl4*0
t dt M2(t)* t2t

t dt8Ṗ*
3(t8) is of order l5

@14#. However, the linear damping term in Eq.~59! cannot be
simply written in the local form2l2P* (t)*0

t dt M1(t)
since in this case the nonlocal correction has contribution
orderl3 andl4 which must be retained. This correction ca
be written in the form

l2E
0

t

dt M1~t!E
t2t

t

dt8Ṗ* ~t8!

5l3E
0

t

dt M0~t!E
t2t

t

dt8F†~t8!

2l4E
0

t

dt M0~t!E
t2t

t

dt8E
0

t8
dt9 M0~t9!

3P* ~t82t9!1O~l5!, ~62!

where we have used the result thatM1(t)5M0(t)1O(l2)
according to Eq.~60!. The first term in the right-hand side o
this expression depends on initial coordinates of the bath
may be treated as a small correction to the random fo
F†(t). The second term can be written in the local form

2l4P* ~ t !E
0

t

dt M0~t!E
t2t

t

dt8E
0

t8
dt9 M0~t9!1O~l5!

~63!

to orderl5. As a result, Eq.~59! can be written in the loca
form

dP* ~ t !

dt
5lF̃†~ t !2l2g1~ t !P* ~ t !2l4g2~ t !P

*
3 ~ t !,

~64!

with the modified random force

F̃†~ t !5F†~ t !1l3E
0

t

dt M0~t!E
t2t

t

dt8F†~t8! ~65!

and the damping functions given by
7-8
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g1~ t !5E
0

t

dt M1~t!1l2E
0

t

dt M0~t!E
t2t

t

dt8

3E
0

t8
dt9 M0~t9!, ~66!

g2~ t !5E
0

t

dt M2~t!. ~67!

For t@tc , the time-dependent coefficientsg i(t) attain their
limiting time-independent valuesg i , which can be obtained
from the expressions above by setting the upper integra
limit t to infinity.

It is possible to obtain explicit expressions for th
memory functionsMi(t) and the damping functionsg i(t) for
the extended Rayleigh model. To accomplish this, expl
expressions for the functionsGi defined by Eqs.~19! must be
computed. It is convenient to express these functions as
sum of two parts corresponding to the force acting on the
and right sides of the piston,Gi5Gli 1Gri . It is some-
what problematic to calculate terms such asGl1
5eL0t ]Fl(t)/]X due to the parametric dependence ofFl(t)
on X that is evident when the force is expressed in terms
qi(t) and v i(t) @see Eq.~33!#. One straightforward, albei
inelegant, way to circumvent this difficulty is to express t
force in terms ofN(x,v)[N(x,v;t50). Details of this tech-
nique can be found in Appendix B. Using this approach,
obtain for the left-side part ofG1

Gl1~ t1 ,t2!5kfE
0

`

dvE
2v(tc1t1)

b

dq N~Xl1q,v;2tc!

3cosvS t11
q

v D2kfu~tc2t2!cosvt2

3E
0

`

dvE
2v(tc1t12t2)

2vt1
dq N~Xl1q,v;2tc!,

~68!

where the integration limitb is

b52v~tc1t12t2!u~tc2t2!2vt1u~ t22tc!. ~69!

The expression forGr1 can be obtained from the above on
by replacements,

E
0

`

dv→E
2`

0

dv, E
q1

q2
dq→E

q2

q1
dq. ~70!

Note that^Gl1&5^Gr1&.
For the left-side contribution toG2, we obtain
04110
n
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ft
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Gl2~ t,t1 ,t2!5kfE
0

`

dv N~Xl2v~ t1tc!,v;2tc!

1kfE
0

`

dvE
2v(t1tc)

b

dq N~Xl1q,v;2tc!
v

v

3sinvS t1
q

v D1kff~ t1 ,t2!

3E
0

`

dv N~Xl2vt,v;2tc!, ~71!

where the functionf(t,t1 ,t2) is

f~ t1 ,t2!5u~ t22tc!2u~ t12tc!u~tc2t2!cosvt2

1u~tc2t1!u~tc2t2!cosvt2 cosvt1 , ~72!

and the upper integration limitb is

b52v~tc1t2t2!u~tc2t2!2vtu~ t22tc!. ~73!

A similar expression forGr2 can be obtained from that fo
Gl2 using replacements~70!, and, in addition, by multiplying
the first and the last terms on the right-hand side of Eq.~71!
by 21. Recall that we anticipatêG2&50 by symmetry so
that ^Gr2&52^Gl2&, which can be explicitly verified from
the expressions above.

It has been shown above that the damping forces in
nonlinear Langevin equation can be expressed as integra
the cumulantŝ^G0G2&& and ^̂ G0G0G1&&. From Eqs.~68!,
~71!, ~33!, and ~40!, one can get explicit expressions fo
these cumulants. Fort.t1.t2 we find

^̂ G0G2~ t,t1 ,t2!&&52^̂ Gl0Gl2~ t,t1 ,t2!&&

5
nSkf

2

v
f1~ t,t1 ,t2!E

0

`

dv f M~v !v,

~74!

where

f1~ t,t1 ,t2!52u~tc2t !sinvt cosvt1 cosvt2 . ~75!

The second cumulant required is

^̂ G0G0~ t2t1!G1~ t,t2!&&

52^̂ Gl0Gl0~ t2t1!Gl1~ t,t2!&&

52nSS kf

v D 3

f2~ t,t1 ,t2!E
0

`

dv f M~v !v3,

where the functionf2 has the form

f2~ t,t1 ,t2!5u~tc2t !cosvt2$v~tc2t !cosv~ t2t1!

1 1
2 sinv~ t1t1!1 1

2 sinv~ t2t1!%.

These results allow one to calculate the functionsAi(t)
defined by Eqs.~57! and ~58!,
7-9
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A1~ t !5m2v2N j1~ t !, ~76!

A2~ t !52m2v2b21N j2~ t !, ~77!

where dimensionless functionsj i(t) are given by

j1~ t !5
1

A2p
u~tc2t !sin3 vt,

j2~ t !5
1

A2p
u~tc2t !$sin3 vt1vt~p2vt !sinvt%.

~78!

The memory functions in the non-Markovian LE~59! take
the form

M1~ t !5Nv2$j0~ t !22l2j1~ t !2l2j2~ t !%, ~79!

M2~ t !5Nv2
b

m
j1~ t !, ~80!

Here the functionj0(t) is given by Eq.~45! and governs the
memory function M0(t) in the linear LE ~15!, M0(t)
5Nv2j0(t). The additionall2-correction terms lead to a
faster decay of the linear damping kernelM1(t) compared to
M0(t). The kernel for nonlinear dampingM2(t) is not a
decaying function of time but rather has a maximum at
5tc/2.

Explicit expressions for damping functionsg i(t) in the
local-in-time LE~64! by integratingMi(t) according to Eqs.
~66! and ~67!, and the nonlinear LE for the Rayleigh mod
with a parabolic potential takes the form

dP* ~ t !

dt
5lF̃†~ t !2Nl2vH z1~ t !P* ~ t !1l2

b

m
z2~ t !P

*
3 ~ t !J ,

~81!

where the nonlinear damping functionz2(t) is given by

z2~ t !5vE
0

t

dtj1~t!

5
1

A2p
u~tc2t !H 2

3
2cosvt1

1

3
cos3 vtJ

1
1

3
A8

p
u~ t2tc!, ~82!

and the linear damping functiong1(t) can be written as

z1~ t !5z0~ t !1l2«1~ t !1Nl2 «2~ t !. ~83!

The main contribution to the overall damping coefficie
z1(t) is given by the functionz0(t)5v*0

t dt j0(t), while
the corrections arising at higher orders in thel expansion are

«1~ t !52vE
0

t

dt$2j1~t!1j2~t!%, ~84!
04110
t

«2~ t !5v3E
0

t

dtj0~t!E
t2t

t

dt8E
0

t8
dt9j0~t9!. ~85!

Note that«1(t) and «2(t) are of different signs for allt. If
N!1 the correction is determined mostly by«1(t),0 and
tends to decrease the damping functionz1(t). In contrast, if
N@1 the main correction comes from«2(t).0 effectively
increasing the linear damping.

For a coarse-grained description on the time scalet@tc
with a time resolutiontc!Dt!tp , one can replace the
damping functionsg i(t) in the LE ~81! by their limiting
valuesg i(tc).

VI. CONCLUDING REMARKS

The notion that the character of Brownian motion of
finite-sized particle may depend on parameters other than
mass ratiol2 dates back to Lorentz and has been examin
by many authors~see Refs.@17–19#, and references therein!.
It is known that when hydrodynamic effects are importa
another relevant parameter is the ratio of the mass densi
the bath to that of the particle. In this paper we have de
onstrated that even when hydrodynamic effects are absen
in the extended Rayleigh model, the character of the beh
ior of a tagged particle may not be governed byl2 but by the
renormalized parameterl

*
2 5Nl2, which can be interpreted

as the ratio of the average total mass of particles in the
teraction zoneM* to the massM of the tagged particle.
When the average number of particles in the interaction z
is large~i.e., N@1), l* !1 is a necessary condition for th
applicability of a conventional perturbation scheme of de
vation of the LE. In this case the conventional assumption
Gaussian random force is justified for any time scale. IfN
,1, the parameter of the expansion isl2, and the Gaussian
force approximation holds only on a time scale that is mu
longer than the characteristic time for the relaxation of
bath.

Although this paper focuses on the specific model of
ideal gas bath interacting with a Brownian particle throug
quadratic repulsive potential, many of the results obtain
are quite general. In particular, the LE~64! and expressions
~66! and~67! for the damping coefficients in terms of micro
scopic time-correlation functions, which may be conside
as the generalized version of the fluctuation-dissipation th
rem, are limited neither to the specific form of interactio
potential between the bath and the tagged particle nor to
ideal gas bath. The results of Sec. III concerning the cum
lant expansion of the kernelK(t)5^FF†(t)& are also genera
and not limited to any specific model. Combined with qu
general theorems about cumulant properties@20#, these re-
sults may be useful for more realistic models with interact
bath particles.

The explicit expressions for the kinetic coefficients a
memory functions appearing in the Langevin equations h
been derived in this paper in the thermodynamic limit,
that any correlations due to finite size of the system are
glected. It should be mentioned, however, that the equat
themselves, as well as the fluctuation-dissipation relati
relating the kinetic coefficients to correlation functions, al
7-10
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hold for a system with finite baths. For finite systems t
explicit form of the kinetic coefficients may be rather com
plicated even for a bath composed of ideal gas particles

In this paper we have considered the case of the tot
symmetric bath when thermodynamic and microscopic pr
erties of the gas to the left and to the right of the piston
the same. Some interesting physical implications arising
the case of an asymmetric bath will be presented elsew
@21#.

ACKNOWLEDGMENTS

This work was supported by a grant from the Natu
Sciences and Engineering Research Council of Canada.

APPENDIX A

In this appendix, for the sake of completeness, we sh
explicitly that the functionC4 defined by Eqs.~14! is of
second order in cumulants of products ofGi . C4 can be
written as the sum

C45C4
(1)1C4

(2)1C4
(3)1C4

(4) ,

where the first constituent

C4
(1)5

2

m2
$^G0G0~ t2t1!G0~ t2t2!G2~ t,t3 ,t4!&

2^G0G0~ t2t1!&^G0~ t2t2!G2~ t,t3 ,t4!&%,

is obviously quadratic in cumulants,

C4
(1)5

2

m2
$^̂ G0G0~ t2t2!&&^̂ G0~ t2t1!G2~ t,t3 ,t4!&&

1 ^̂ G0~ t2t1!G0~ t2t2!&&^̂ G0G2~ t,t3 ,t4!&&

1 ^̂ G0G0~ t2t1!G0~ t2t2!G2~ t,t3 ,t4!&&%.

The second term is

C4
(2)5

1

m2
$^G0G0~ t2t1!A1&2^G0G0~ t2t1!&^A1&

2^G1~ t,t4!&@^G0G0~ t2t1!G1~ t2t3 ,t22t3!&

2^G0G0~ t2t1!&^G1~ t2t3 ,t22t3!&#%,

where A15S(t2t2)G0(t22t3)G1(t2 ,t4). Noting that A1
can be written as

A15G1~ t2t3 ,t22t3!G1~ t,t4!1G0~ t2t3!G2~ t,t2 ,t4!,

and recalling that due to symmetry^G2(t)& and ^G0G1(t)&
are zero at all times@see Eq.~21!#, one can see thatC4

(2) is
also quadratic in cumulants,
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C4
(2)5

1

m2
$^G1~ t2t3 ,t22t3!&^̂ G0G0~ t2t1!G1~ t,t4!&&

1 ^̂ G0G0~ t2t3!&&^̂ G0~ t2t1!G2~ t,t2 ,t4!&&

1 ^̂ G0G2~ t,t2 ,t4!&&^̂ G0~ t2t1!G0~ t2t3!&&

1 ^̂ G0G0~ t2t1!G1~ t2t3 ,t22t3!G1~ t,t4!&&

1 ^̂ G0G0~ t2t1!G0~ t2t3!G2~ t,t2 ,t4!G1~ t,t4!&&%.

The third term is

C4
(3)5

P
*
2

m3
$^G0B1&2^G0B2&^G1~ t2 ,t4!&12^G0B3&%,

where

B15S~ t2t1!S~ t2t2!G0~ t22t3!G1~ t2 ,t4!,

B25S~ t2t1!S~ t2t2!G0~ t22t3!,

B35S~ t2t1!G0~ t12t2!G2~ t1 ,t3 ,t4!

can be expressed as

B15G2~ t2t3 ,t12t3 ,t22t3!G1~ t,t4!

1G1~ t2t3 ,t22t3!G2~ t,t1 ,t4!

1G1~ t2t3 ,t12t3!G2~ t,t2 ,t4!

1G0~ t2t3!G3~ t,t1 ,t2 ,t4!,

B25G2~ t2t3 ,t12t3 ,t22t3!,

B35G1~ t2t2 ,t12t2!G2~ t,t3 ,t4!

1G0~ t2t2!G3~ t,t1 ,t3 ,t4!.

Then using the symmetry property~21! one can see thatC4
(3)

is quadratic in cumulants.
The remaining term

C4
(4)5S P*

m D 2

^G0G4~ t,t1 ,t2 ,t3 ,t4!&

1
3P

*
2

m3
$^G0G0~ t2t1!G3~ t,t2 ,t3 ,t4!&

2^G0G0~ t2t1!&^G3~ t,t2 ,t3 ,t4!&%

is clearly linear in cumulants,

C4
(4)5S P*

m D 2

^̂ G0G4~ t,t1 ,t2 ,t3 ,t4!&&

1
3P

*
2

m3
^̂ G0G0~ t2t1!G3~ t,t2 ,t3 ,t4!&&.
7-11
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APPENDIX B

In this appendix the functionsGi defined by Eqs.~19! are
evaluated for the extended Rayleigh model of diffusio
These functions are defined in terms of powers of alterna
operators]/]X andeL0(t i2tk). As mentioned in the text, rep
resentations~33! and ~35! for the force on the fixed piston
are unwieldy since these involveqi(t) and v i(t) which are
functions ofX. For the purpose of evaluating theGi , it is
convenient to express the force in terms ofN(x,v)
[N(x,v;t50). For t.0, we have

Fl~ t !5kfE
0

`

dvE
2vt

a(t)

dq N~Xl1q,v !
v
v

sinvS t1
q

v D
1u~tc/22t !kfE

0

`

dvE
0

`

dq N~Xl1q,v !q~ t !

1u~tc/22t !kfE
2`

0

dvE
Q(t)

`

dq N~Xl1q,v !,q~ t !

1u~ t2tc/2!u~tc2t !kf

3E
0

`

dvE
0

Q(t)

dq N~Xl1q,v !q~ t !, ~B1!

where

a~ t !52vu~ t2tc!~ t2tc!,

q~ t !5q cosvt1
v
v

sinvt,

Q~ t !52
v
v

tanvt.

The first term in Eq.~B1! describes the contribution to th
force Fl(t) from the particles that were outside the intera
tion zone att50 ~i.e., q,0) and are in the interaction zon
at the momentt @i.e., q(t).0].

The remaining terms give the contribution from particl
that were in the interaction zone att50 ~i.e., q.0) and are
still there at the momentt @i.e.,q(t).0]. In fact, all particles
in the interaction zone with positive initial velocities att
50 will be still in the interaction zone att,tc/2 ~the second
term!, while the particles with negative initial velocities wi
be in the interaction zone at timet,tc/2 only if at t50 they
reside deep inside the interaction zone, namely,q.Q(t) ~the
third term!. For tc.t.tc/2 only the particles with positive
initial velocity will be in the interaction zone at timet pro-
vided their initial coordinates are less thanQ(t) ~the last
term!.

From expression~B1!, one easily calculates]Fl(t)/]X
writing ]N(Xl1q,v)/]X5]N(Xl1q)/]q and integrating by
parts to obtain
04110
.
g

-

]Fl~ t !

]X
52kf cosvtNz~ t !2kfE

0

`

dv

3E
2vt

a(t)

dq N~Xl1q,v !
v
v

cosvS t1
q

v D .

~B2!

Here Nz(t) is the number of particles which were in th
interaction zone att50 and remain att.0,

Nz~ t !5u~tc/22t !E
0

`

dvE
0

`

dq N~Xl1q,v !

1u~tc/22t !E
2`

0

dvE
Q(t)

`

dq N~Xl1q,v !

1u~ t2tc/2!u~tc2t !E
0

`

dvE
0

Q(t)

dq N~Xl1q,v !.

~B3!

Nz(t) can be written in compact form in terms of the dens
at time2tc according to

Nz~ t !5u~tc2t !E
0

`

dvE
2vtc

2vt

dq N~Xl1q,v;2tc!.

~B4!

In fact, the number of particles in the interaction zone at
50 is

E
0

`

dvE
2vtc

0

dq N~Xl1q,v;2tc!, ~B5!

while at timet it is given by

E
0

`

dvE
2vtc

0

dq N~Xl1q,v;t2tc!

5E
0

`

dvE
2v(t1tc)

2vt

dq N~Xl1q,v;2tc!. ~B6!

By definition Nz(t) involves the particles that contribute t
both integrals~B5! and~B6!, which leads to Eq.~B4!. Com-
bining Eqs.~B2! and ~B4!, we have
7-12
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]Fl~ t !

]X
52kfE

0

`

dvE
2vt

a(t)

dq N~Xl1q,v !cosvS t1
q

v D
2kfu~tc2t !cosvtE

0

`

dv

3E
2vtc

2vt

dq N~Xl1q,v;2tc!. ~B7!

For comparison, let us calculate the average derivativ
the total forceF0(t)5Fl1Fr ,

K ]F0~ t !

]X L 52K ]Fl~ t !

]X L 52
2kfnS

v E
0

`

f M~v !v dvu~tc2t !

3@sinvt1~p2vt !cosvt#.

Comparing this expression with Eq.~43! for the memory
kernel K0(t)5^FF0(t)&, it is evident that^]F0(t)/]X&5
2b^ FF0(t)&. This is the general result used in the ma
text, Eq. ~10!, confirmed using the explicit expression fo
]F0(t)/]X.

From Eq. ~B7!, we obtain the following expression fo
Gl1:

Gl1~ t1 ,t2![eL0(t12t2)
]Fl~ t2!

]X

52kfE
0

`

dvE
2vt2

a(t2)

dq N~Xl1q,v;t12t2!

3cosvS t21
q

v D2kfu~tc2t2!cosvt2

3E
0

`

dvE
2vtc

2vt2
dq N~Xl1q,v;t12t22tc!,

~B8!

where, according to Eq.~13!, it is assumed thatt1.t2. Ex-
pressing this in terms of the microscopic density at ti
2tc using Eq.~37!, one obtains Eq.~68! of the main text.

To evaluateG2, one has to take the derivative ofG1 with
respect toX. Let us expressG1 in terms of the density at time
t50, N(x,v), as done above forFl(t). The first term in the
right-hand side of Eq.~B8! involves only particles located
outside the interaction zone, so using property~37!, the first
term can be written as

2kfE
0

`

dvE
2vt2

a(t2)

dq N~Xl1q2v~ t12t2!,v !cosvS t21
q

v D
52kfE

0

`

dvE
2vt1

b

dq N~Xl1q,v !cosvS t11
q

v D , ~B9!
04110
of

e

where the upper integration limit is

b52v~ t12t2!u~tc2t2!2v~ t12tc!u~ t22tc!.

The second term on the right-hand side of Eq.~B8! can be
expressed as

2kfu~tc2t2!cosvt2E
0

`

dv

3E
2vtc

2vt2
dq N~Xl1q2v~ t12t2!,v;2tc!

52kfu~tc2t2!cosvt2E
0

`

dv

3E
2v(tc1t12t2)

2vt1
dq N~Xl1q,v;2tc!. ~B10!

If t1.tc , then all particles that contribute to this integral
t50 will be outside the interaction zone in theq interval
from 2v(t12t2) to 2v(t12tc). Therefore, fort1.tc the
second term equals

2kfu~tc2t2!u~ t12tc!cosvt2E
0

`

dv

3E
2v(t12t2)

2v(t12tc)

dq N~Xl1q,v !. ~B11!

If t1,tc , then two sets of particles contribute to express
~B10!. The first set of particles is composed of particles th
at time 2tc are in theq interval from 2v(tc1t12t2) to
2vtc . At t50, these particles will be outside the interactio
zone in the interval„2v(t12t2),0…, and hence their contri-
bution is

2kfcosvt2E
0

`

dvE
2v(t12t2)

0

dq N~Xl1q,v !. ~B12!

The second group of particles are those that were in thq
interval from2vtc to 2vt1 at time2tc . At t50, all these
particles will be in the interaction zone. Taking into accou
Eq. ~B4!, the corresponding contribution can be written
2kfcosvt2Nz(t1). Using expression~B3! for Nz(t), one ar-
rives at the following representation forGl1 in terms of
N(x,v),
7-13
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Gl1~ t1 ,t2!52kfE
0

`

dvE
2vt1

b

dq N~Xl1q,v ! cosvS t11
q

v D2kfu~tc2t2!u~ t12tc!cosvt2

3E
0

`

dvE
2v(t12t2)

2v(t12tc)

dq N~Xl1q,v !2kfu~tc2t2!u~tc2t1!cosvt2

3E
0

`

dvE
2v(t12t2)

0

dq N~Xl1q,v !2kfu~tc2t2!u~tc/22t1!cosvt2

3E
0

`

dvE
0

`

dq N~Xl1q,v !2kfu~tc2t2!u~tc/22t1!cosvt2E
2`

0

dvE
Q(t1)

`

dq N~Xl1q,v !

2kfu~tc2t2!u~tc2t1!u~ t12tc/2!cosvt2E
0

`

dvE
0

Q(t1)

dq N~Xl1q,v !. ~B13!

Taking derivative of this expression with respect toX gives

]

]X
Gl1~ t1 ,t2!5kfE

0

`

dv N~Xl2vt1 ,v !1kf@u~ t22tc!2u~tc2t2!u~ t12tc!cosvt2#E
0

`

dv N„Xl2v~ t12tc!,v…

2kfE
0

`

dvE
2vt1

b

dq N~Xl1q,v !
v

v
sinvS t11

q

v D1u~tc/22t1!u~tc2t2!k cosvt2

3E
2`

0

dv N„Xl1Q~ t1!,v…2u~tc2t1!u~ t12tc/2!u~tc2t2!k cosvt2E
0

`

dv N„Xl1Q~ t1!,v…. ~B14!

The last two terms can be written as

kfu~tc2t2!u~tc2t1!
cosvt2

tanvt1
E

0

`

dv NS Xl1
v
v

,2
v

tanvt1
D

5kfu~tc2t2!u~tc2t1!
cosvt2

tanvt1
E

0

`

dv NS Xl2
vt1

sinvt1
,

v
sinvt1

;2tcD
5kfu~tc2t2!u~tc2t1!cosvt1 cosvt2E

0

`

dv N~Xl2vt1 ,v;2tc!, ~B15!

where we have used the property that if the initial coordinate and velocity of the particle in the interaction zone are

q~0!5
V

v
, v~0!52

V

tanvt
~B16!

with V.0 and 0,t,tc , then att52tc

q~2tc!52v~2tc!t, v~2tc!5
V

sinvt
. ~B17!

Substituting Eq.~B15! into Eq. ~B14!, acting on the result by the propagatoreL0(t2t1), and using again the propert
N(x,v;t1t)5N(x2vt,v;t) for the motion outside the interaction zone, we finally obtain fort.t1.t2,
041107-14
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Gl2~ t,t1 ,t2![eL0(t2t1)
]

]X
G1~ t1 ,t2!

5kfE
0

`

dv N~Xl2vt,v !1kfu~ t12tc!u~ t22tc!E
0

`

dv N„Xl2v~ t2tc!,v…2kfu~tc2t2!u~ t12tc!cosvt2

3E
0

`

dv N„Xl2v~ t2tc!,v…2kfE
0

`

dvE
2vt

b

dq N~Xl1q,v !
v

v
sinvS t1

q

v D
1kfu~tc2t2!u~tc2t1!cosvt1 cosvt2E

0

`

dv N~Xl2vt,v;2tc!, ~B18!

whereb52v(t2t2)u(tc2t2)2v(t2tc)u(t22tc). Expressing the first three terms throughN(x,v;2tc) rather thanN(x,v),
one arrives at Eq.~71! of the main text.
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